NEED HELP? SCAN OR CLICK HERE TO CONTACT US

Air-Met Scientific www.airmet.com.au

Fixed Gas Detector

Operator's Manual

GTQ-Anr-A/ GTQ-Anr-D/ AG210/ AG211 Dear customer:

Glad to have your trust and support on AIYI Technologies, we will provide you best product and service in return.

As an ISO certified manufacturer. AIYI Technologies has been focus on safety and environment many years, we provide you gas & dust detector and systems. The design and manufacture of product is strictly follow the international standard and company regulations, and each product get a normative QC control to ensure the best quality for you.

Please read and understand this operator's manual before operating instrument. Improper

use of the gas monitor could result in bodily harm or death. Please don't hesitate to contact us if you have any questions or suggestions. Thanks!

We are honored to have the opportunity to serve you.

Yours sincerely,

Dongxu Zhang Vice-Gerneral Manager Nanjing AIYI Technologies Co., Ltd.

Copyright Statement

Copyright© 2017 Nanjing AIYI Technologies Co., ltd. All Rights Reserved.

This document is the property of Nanjing AIYI Technologies Co., ltd. And can be neither reproduced nor disclosed to a third party without a written authorization.

AE

is the registered trademark of Nanjing AIYI Technologies Co., ltd. The others inside of the document belongs to other companies.

Disclaimer

The texts, photos, graphics, diagrams and illustrations provided in this manual are for explanation and explanation purposes only, and may differ from the specific products. Please refer to the actual product. AiTech may update this manual without prior notice due to product upgrades or other needs. Unless otherwise specified, this manual is intended as a guide only and the statements made do not constitute any form of warranty.

To the fullest extent permitted by law, the products described in this manual are provided "as is" and may contain defects, errors or malfunctions. AIYI Technologies does not provide any express or implied warranties of any kind, including but not limited to quality satisfaction. It is suitable for specific working conditions, through government inspections, and does not infringe the rights of third parties. There is no compensation for any special, incidental, incidental or consequential damages resulting from the use of this manual or the use of our products. To the fullest extent permitted by law, AIYI Technologies liability does not exceed the amount paid for the product you purchased.

AIYI Technologies shall not be responsible for the personal injury or property damage of you or a third person for the following reasons: The equipment is not properly installed or used in strict accordance with the requirements; it is not regularly maintained as required; force majeure ; your own or third-party reasons (including but not limited to access to third-party products, components, etc.).

The right to interpret and modify this disclaimer belongs to Nanjing AIYI Technologies Co., Ltd.

Introduction to the operation manual

This manual mainly introduces the hardware characteristics, installation methods and maintenance of the gas detection transmitters.

This manual is suitable for the following personnel: instrument maintenance engineers, field users.

Note: When installing the device, please carefully read the contents of this manual to avoid possible personal injury and equipment damage.

In addition to this manual, if you need to obtain the latest product information, you can go to www.aiyitec.com or call the hotline 0086-25-87756351 for consultation.

Note: To avoid possible personal injury and equipment damage before and during the installation of the equipment, please read the relevant contents of this manual carefully.

_ _ _ _

_ _ _ _ _ _ _ _ _

Contact Us

Nanjing AIYI Technologies Co., Ltd.

Address: Building 13, No. 1318 Qingshuiting East Road, Jiangning District,

Nanjing 210000, Jiangsu, China

Tel: +86-25-87756351 Fax: +86-25-87787362

Website: www.aiytec.com

Email: sales@autequ.com

CONTENT

Chapter 1: Product Introduction
1.1 Brief introduction ·····01
1.2 Appearance structure ······02
1.3 Specifications ·····05 Chapter 2: Installation
2.1 Packing list ·····07
2.2 Installation cautions ······07
2.3 Installation preparation
2.4 Location selection
2.5 Installation
2.6 Wiring10
2.7 Power-on test 12
Chapter 3: Operation and Maintenance
3.1 Power on
3.2 Main menu 13
3.3 Alarm setting 13
3.4 Calibration preparation 14
3.5 Zero calibration ·····14
3.6 Span calibration
3.7 485 address setting
3.8 Factory setting
3.9 4mA 20mA Current correction
3.10 Save and Back
3.11 Maintenance 17 Chapter 4: Appendix
4.1 Appendix 1 Gas detector selection table
4.2 Appendix 2 VOC gas selection table 19
4.3 Appendix 3 Recommended calibration gas table
4.4 Appendix 4 Trouble-shooting22

Chapter 1: Product Introduction

1.1. Brief introduction

AE'S GTQ-Anr-A, GTQ-Anr-D, AG210, AG211 gas detector are suitable for detecting the content of combustible and toxic gases such as combustible gas, oxygen, and toxic gases in explosion hazard areas. The product adopts the integrated design of sound and light alarm, which can effectively warn of various gas leakage hazards; modular design, easy maintenance; with infrared remote control, can be achieved without open cover operation. IP66 protection class

Features:

Use high-performance sensors, quick response, safer and more reliable.

Model Description:	GTQ-Anr-A	4-20mA signal catalytic combustible gas detector
	GTQ-Anr-D	RS485 signal catalytic combustible gas detector
	AG210	4-20mA signal toxic gas detector
	AG211	RS485 signal toxic gas detector

GTQ-Anr-A、GTQ-Anr-D are combustible gas detector for industrial and commercial use. AG210、AG211 are gas detector which are collectively referred to as gas detectors.

Stainless steel + aluminum alloy material, the protection level of the whole table reaches IP66, which is suitable for harsh working conditions.

High-brightness display, LED status indicator, display rich information.

Built-in low-report, high-report, and fault three switches, which can realize multi-level interlocking.

Infrared remote control operation, no need to open the cover on site.

Standard electrical interface, support external sound and light alarm

A variety of signals are available to support the different needs of customers.

The design, manufacture and verification of this product follow or refer to the following national standards:

GB15322.1-2019 "Combustible Gas Detector Part 1: Point-type Combustible Gas Detector for Industrial and Commercial Use"

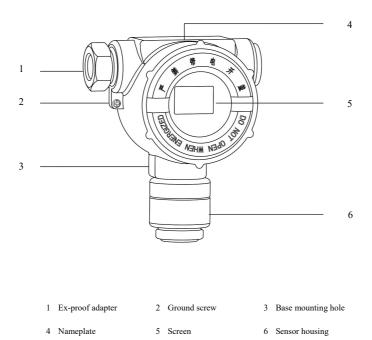
GB 3836.1-2010 "Explosive Atmosphere Part 1: General Requirements for Equipment"

GB 3836.2-2010 "Explosive Atmosphere Part 2: Equipment Protected by Flameproof Enclosure "d""

GB 3836.4-2010 "Explosive Atmosphere Part 4: Equipment Protected by Intrinsic Safety Type "i""

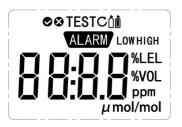
GB/T 50493-2019 Code for Design of Detection and Alarm of Combustible Gas and Toxic Gas in Petrochemical Industry"

GB 12358-2006 "General Technical Requirements for Gas Detector and Alarm in Working Environment"


GB 16838-2005 "Environmental Test Methods and Severity Levels of Fire Electronic Products"

GB/T 4208-2017 "Enclosure protection class (IP code)"

GBZ 2.1-2007 "Occupational Exposure Limits for Hazardous Factors in the Workplace Part 1: Chemical Hazardous Factors"


- JJG365-2008 "Electrochemical Oxygen Analyzer"
- JJG 693-2011 "Combustible gas detection alarm"
- JJG 915-2008 "Carbon Monoxide Detection Alarm"
- JJG 695-2003 "Hydrogen Sulfide Gas Detector"
- JJG 551-2003 "Sulfur Dioxide Gas Detector"
- 1.2. Appearance structure

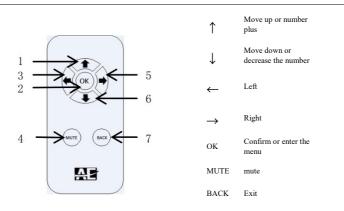
Infrared	Receive infrared remote signal
Power	Normal on, the green light is off
Fault	Normally off, yellow light is
Alarm l	Normally off, and the red light is always on when the alarm-1
Alarm2	Normally off, the red light is always on when the alarm-2

2、Status

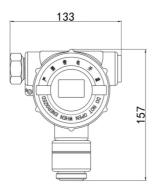
ALARM						
ALARM	Alarm indication					
LOW	Alarm-1					
HIGH	Alarm-2					

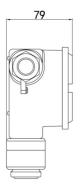
3、Display

Readings

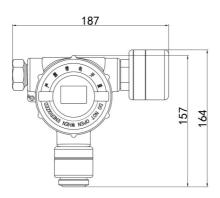

1、Task	2						
©⊗ TESTC ồึ							
⊘	Success						
S Fault							
TEST	Self-inspection						
С	RS485 signal						
Žero calibration indication							
Ó	Range calibration indication						

4、Unit


%LEL	%\	/0L	ppm	μ mol/mol
%LE	L	Perce limit	ntage of	lower explosive
%VC	L	Volu	me perce	ntage
µmol/m	ol	Volu	me ratio j	per million
pp	m	Volu	me ratio j	per million



Remote control




Gas detector dimensions(mm)

Dimensions of gas detector with GARY sound-light alarm (mm)

Description	Specifications	GTQ-Anr-A	GTQ-Anr-D	AG210	AG211
Gas detected					
Combustible gas	Combustion catalytic	•	•	-	
Toxic gas	Electrochemical, PID, Infrared	-	-	•	•
Detection					
Measure range	0-100%LEL	•	•	-	-
	See Appendix	-	-	•	•
	T90≤30S	•	•	-	-
See Appendix *	T90≤30/60/180S	-	-	•	•
Accuracy	≤±3%FS	•	•	•	•
Repeatability	≤3%FS	•	•	•	•
Electric					
Power supply	18-28VDC(Standard24VDC)	•	•	•	•
Power	≤2.5W	•	•	-	
consumption	≤2W	-	-	•	•
	4-20mA	•	-	•	
Single output	RS485		•	-	•
Wiring	Three wiring	•		•	-
() II IIIg	Four wiring	-	•	-	•
6.11	RVVP3*1.0mm ²	•	-	•	-
Cable	RVVP4*1.0mm ²	-	•	-	•
Relay output	Three relay output(250VAC/5A 30VDC/5A)	•	•	•	•
Display &Operation					
Display	LCD Display	•	•	•	•
Indicator light	Power, fault,alarm1, alarm2	•	•	•	•
Operation method	IR remote control operation	•	•	•	•
Operation Environment					
Ingress protection	IP66	•	•	•	•
Temperature	-40°C~+70°C	•	•	-	
remperature	-20°C~+60°C	-	-	•	•
Humidity	10~95%(No condensation)	•	•	•	•
Pressure	80-120kPa	• 5	•	•	•

Description	Specifications	GTQ-Anr-A	GTQ-Anr-D	AG210	AG211
Structure					
Body Material	ADC12Aluminum alloy + 304L stainless steel	٠	•	•	•
Conduit Port	NPT1/2	•	•	•	•
Weight	About 1.45kg	•	•	•	•
Dimensions	157*133*79mm(H*W*D)	•	•	•	•

Note:

• means it has this function,-means it does not have this function.

*Refer to attached table 1 for detailed detection gas.

*Different gases will be different, and their response time, error, and repeatability are different. The data in the above table is for reference only. Please consult the manufacturer for details.

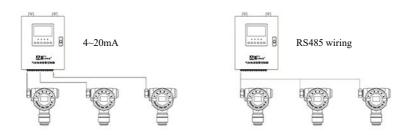
2.1. Packing list

Please check and count the goods before installation to confirm that the appearance of the packing box is complete. After unpacking, check the installation accessories and check whether they are complete. If there is any loss, please contact our company as soon as possible. Items not included in the packing list may be used during the installation process, please purchase by yourself.

Under normal circumstances, the gas detection transmitter contains the following products and accessories:

Note: Remote is universal. For eco-friendly, each order equip one remote only.

- 2.2. Installation cautions
 - Before the detector is installed, it should be inspected in detail whether the explosion-proof mark conforms to the environment of the explosive gas mixture and whether there is obvious crack in the appearance to ensure the explosion-proof performance of the product.
 - When applied to the field of fire type approval, the gas detector should be connected to the corresponding controller, and it is forbidden to connect with other brands and models. The controller must be installed in a non-hazardous area.
 - Please keep the power off state during the installation and wiring process to ensure that there is no flammable gas in the environment, and ensure that the temperature and humidity of the use environment meet the working requirements of the detector.
 - The detector is designed for gas detection in the environment and should not be used on pipelines or other purposes.
 - The detector must be installed so that the sensor is down and the sensor cover must not be blocked or painted.
 - The installation and wiring of the detector should be as far away as possible from high-power equipment.
 - In an oxygen-deficient atmosphere, the catalytic combustion type sensor may be lower than the actual reading. When the oxygen concentration is lower than 10% vol, the instrument will not work properly.
 - Long-term presence of H2S, halogen elements (fluorine, chlorine, bromine, iodine), heavy metals, organic solvents, and acid gases in the environment may cause distortion of the test results, need periodic inspection or calibration.
 - Be careful not to touch the internal circuit when wiring, and the instrument case should be grounded.


The installation, use and maintenance of the product shall comply with the instruction manual and the "Electrical Equipment for Explosive Gas Atmosphere" (GB3836.13-2013) Part 13: Inspection and Repair of Electrical Equipment for Explosive Gas Environment, "Electrical Equipment for Explosive Gas Environment" (GB3836.15-2017) Part 15: "Electrical installation in hazardous areas (except for coal mines), "Electrical equipment for explosive gas atmospheres" (GB3836.16-2017) Part 15: Inspection and maintenance of electrical installations (excluding coal mines) and Relevant regulations on "Construction and Acceptance Specifications for Electrical Equipment Installation Engineering Explosion and Fire Hazardous Environment Electrical Installations" (GB50257-2017).

2.3 Installation preparation

- Complete gas detector assembly, mounting accessories
- Screwdriver, multi-meter (if needed), etc.
- Power and cable

The standard working power supply of the detector is 24VDC. In view of the voltage drop caused by the cable resistance, ensure that the detector supply voltage is not less than 18VDC. If directly connected to the DCS or PLC system, please ensure that the power supply of the detector and its entire loop resistance should be \leq 300 Ω . For the case that the voltage cannot meet the minimum working voltage of the detector, it is necessary to install equipment such as repeater and explosion-proof box.

The detector and the controller are connected by shielded cables, and different cables should be selected depending on the operating conditions. Cable laying should pay attention to the different wiring methods of the bus system and the branching system; it should comply with the national and industrial specifications of the "Electrical Safety Regulations for Explosive Hazardous Locations of the People's Republic of China"; the wiring should be avoided in parallel with the power cable, and the interference affects the communication. The recommended cable is as follows:

For long-distance transmission, replace the cable or install a repeater or other device according to the actual situation.

Model	AG210	AG211	GTQ-Anr-A	GTQ-Anr-D
Single output	4~20mA	RS485	4~20mA	RS485
Recommended cable	RVVP 3×1.0mm ²	RVVP 4×1.0mm ²	RVVP 3×1.0mm ²	RVVP 4×1.0mm ²
Wiring	4~20mA	RS485	4~20mA	RS485

2.4. Location selection

The location of the gas transmitter is critical to achieving the best results. When determining the location, it is recommended to consider the following factors:

I The design drawings and the "Code for Design of Detection and Alarm of Combustible Gas and Toxic Gases in Petrochemical Enterprises" (GB50493-2009) shall be followed.

The detector should be installed at a position where the gas flow is at the maximum concentration or as close as possible to the source of the gas leak.

When installing indoors, if the leak source is outdoors, the detector should be installed at the air inlet.

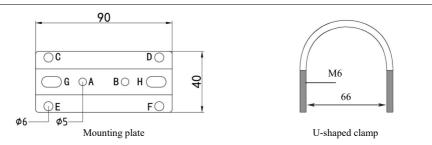
The source of gas leakage that is lighter than air is in a closed or semi-enclosed plant. The detector should be placed above

the source of the leak and at the highest point in the plant where it is prone to build up.

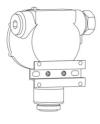
Installation height selection:

When it is heavier than air: the height of the detector should be higher than the floor (floor surface) 0.3-0.6m; when it is lighter than air; the height of the detector should be 0.5-2m higher than the leakage source; when it is close to the air specific gravity: change The height of the detector installation is within 1 m of the source of the leak.

The detector should be installed in a place where there is no wind, no dust, no water, no impact, no vibration, no corrosion, and no electromagnetic interference.


2.5 Installation

- Please refer to 2.2 Installation Precautions for product installation.
- Connect the detector to the mounting base AB hole with the M5 screw (included in the kit).
- This product can be installed on wall or riser.
- Wall Mounting: Secure the detector to the wall with four 6mm expansion tubes and self-tapping screws (included in the kit) by mounting the base CEEF hole.


Standpipe installation: Use the U-shaped clamp in the accessories to fix it on the cylinder or pipe (suitable for DN30-65mm) through the G H hole of the installation base plate.


2.6. Wiring

Installation accessories size(mm)

Installation Diagram

Unscrew the upper cover of the transmitter counterclockwise.

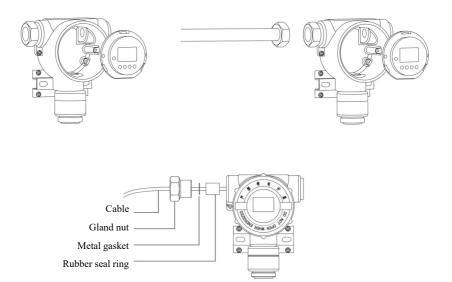
Unscrew the fixing screws on both sides of the display module, buckle the upper and lower recessed parts of the panel with your fingers, and slowly pull out the circuit module upwards. Note that there is a cable link between the circuit module and the sensor, and do not use violence to operate.

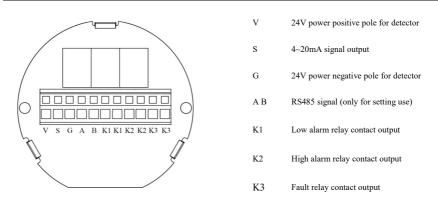
Strip the cable to the required size, and unscrew the adapter, metal gasket and rubber sealing ring of the transmitter wiring port in turn. The cable passes through the above parts one by one and then into the inside of the transmitter cavity. After adjusting the cable, tighten the compression nut to compress the cable tightly.

Use cold-pressed terminals for crimping at all wiring parts to avoid short circuits, bifurcation or falling off of wire ends.

Connect the cables firmly according to the markings of the wiring terminals.

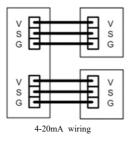
Ground the grounding screw of the enclosure in accordance with the regulations, and the grounding point should be prepared for corrosion protection.

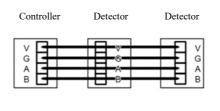

Be sure to tighten the upper cover after wiring is completed.


Note: Since the wiring can only be carried out after the top cover is unscrewed, the explosion-proof safety performance of the transmitter after unscrewing will not be guaranteed. If the transmitter is installed in an explosive hazardous area, take safety precautions before wiring, including but not limited to:

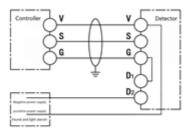
Hot work permit; continuous detection with portable flammable gas detectors; use of intrinsically safe multi-meters; minimize operating time.

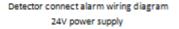
Wiring

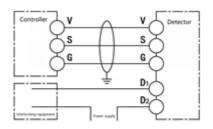

Terminals



Note: 4~20mA signal output and RS485 output can only choose one, pay attention to distinguish the actual




Detector



Detector connect external device wiring diagram non 24v power supply

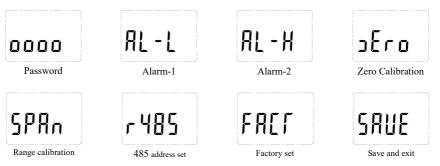
Gas	Principle	Time	Gas	Principle	Time		
Combustible gas	Combustion catalytic	0.5h	5h O2 Electrochemical		0.5h		
Toxic gas	Electrochemical	1h	ETO	Electrochemical	72h		
CO2	Infrared	1h	1h VOC PID		0.5h		
The above time is for reference only, please consult the manufacturer for details.							

2.7. Power-on test

I The first power-on should be stable for not less than 20 minutes. After the power is turned on, the detector may have an alarm phenomenon. This is determined by the characteristics of the sensor itself. After waiting for the preheat/polarization, the detector will automatically return to normal value and working. In the normal working mode, the detector will display the measured gas concentration value in real time and transmit the corresponding 4~20mA or RS485 signal.

Before the system is powered on, you should verify that the wiring and installation are correct.

Due to the nature of the sensor, the detector needs to be warmed up/polarized for a period of time before it can work properly. Sensors with different principles have different warm-up times, usually:



Chapter 3 Operation and Maintenance

3.1. Power on

- After power-on, the monitor light on the transmitter panel is always on, and the screen displays the self-check, version number, and countdown (warm-up) 45s before entering the main interface.
- 3.2. main menu

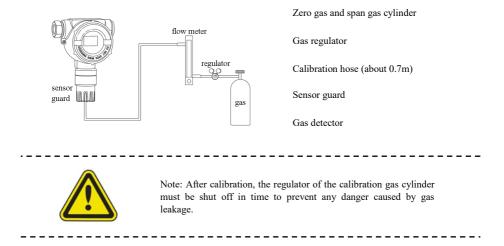
| The transmitter is equipped with an infrared remote control for operation. The operation should make the infrared transmitting end of the remote control aim at the infrared receiving window on the transmitter panel.

Press the "OK" key to enter, enter the password (four "OK" keys) and then enter the main menu (automatically return to the main interface if there is an operation error). The main menu includes 7 options including low alarm, high alarm, zero calibration, range calibration, 485 address setting, factory setting, and save and exit. Press the "Up" and "Down" keys to select, and press "Exit" to exit without saving.

3.3. Alarm setting

Value setting

AL - L


Back

Enter the alarm setting menu. At this time, the screen displays the current alarm value. Press the "Up" and "Down" keys to adjust the value, and press the "Left" and "Right" keys to adjust the number of digits. After setting, press "OK" to save and return to the previous menu.

Note that oxygen is higher than the high alarm, lower than the low alarm, and other poisonous gas and combustible gas are higher than the alarm value.

3.4. Calibration preparation

Prepare before calibration: zero standard gas, span standard gas, calibration regulator (including flow meter), matching calibration adaptor, calibration hose.

Connect the calibration gas cylinder, calibration regulator, hose, calibration adaptor, and open the regulator and pass the gas to gas detector. Then do calibrate operation after the a stable readings.

3.5. Zero calibration

In order to ensure accuracy, it is recommended to use pure nitrogen for zero calibration.

Slowly open the gas cylinder valve, adjust the flow meter knob to 0.5L/min, ventilate and wait for a stable readings, and start calibration.

Enter the zero point calibration menu, press the "OK" key to calibrate, if the test is successful, it will display $\sqrt{}$ and then return to the previous menu with "SAVE" option; if it displays \times , it means the calibration failed.

After entering the zero calibration menu, you can select "SAVE" to save the data and back to home menu. Or press the "BACK" key to exit without saving. At this time, the screen displays \times and returns to the previous menu.

| The above operation is recommended to be repeated 3 times to ensure the stability of the instrument.

3.6. Span calibration

| For different gases, the corresponding concentration standard gas should be selected. For details, please refer to appendix 3.

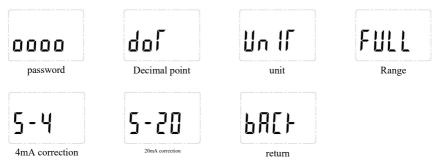
Slowly open the gas cylinder valve, adjust the flow meter knob to 0.5L/min, ventilate and wait for a stable readings, and start calibration.

Enter the span calibration menu, the current calibration value is displayed on the screen at this time, press the "up" and "down" keys to adjust the value, and press the "left" and "right" keys to adjust the number of digits. Set the value to the corresponding ventilation concentration and press the "OK" button to calibrate. If the test is successful, it will display $\sqrt{}$ and return to the previous menu; if it displays \times , it means the calibration has failed.

After entering the zero calibration menu, you can select "SAVE" to save the data and back to home menu. Or press the "BACK" key to exit without saving. At this time, the screen displays \times and returns to the previous menu.

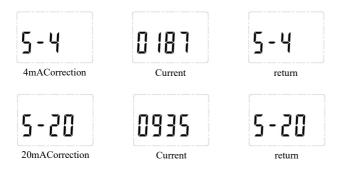
The above operation is recommended to be repeated 3 times to ensure the stability of the instrument.

3.7. 485 address setting


Enter the 485 address setting menu. At this time, the screen displays the current transmitter's 485 address. Press the "up" and "down" keys to adjust the value, and press the "left" and "right" keys to adjust the number of digits. After setting, press "OK" to save and return to the previous menu.

| This function item is only valid for the transmitter with RS485 signal output, please do not set the 4-20mA gas detector.

3.8. Factory setting



I Press the "OK" key to enter, enter the password (four "up" keys) and then enter the factory setting menu (automatically return to the main menu if an operation error occurs). The factory setting includes 6 options including decimal point, unit, range, 4mA correction, 20mA correction, and return. Press the "Up" and "Down" keys to select, and press "Exit" to exit without saving.

Change the transmitter parameters to professional parameter settings. Improper operation is very likely to cause the meter to fail to work normally. It is not recommended that the user modify it by himself. Please contact the manufacturer if you need to modify it.

3.9. 4mA/20mA current correction

When the output signal of the 4-20mA transmitter does not match the actual concentration, it can be adjusted in the current correction option.

Connect the multimeter to the transmitter S and G terminals respectively.

I Enter the 4mA current calibration menu, check the current value on the multimeter, press the "up" key or "down" key to adjust the output current until the multimeter value is displayed as 4mA, after the setting is completed, press the "OK" key to save and return to the previous menu.

20mA current correction operation is the same as the 4mA current correction operation.

3.10.Save and Exit

After all settings are completed, select save in the main menu and press "OK" to save and exit.

3.11. Maintenance

- In order to ensure the performance of the transmitter, calibration should be carried out regularly. The calibration frequency depends on the specific working conditions. It is recommended to calibrate the transmitter every 3 months. The calibration record should be filled in each calibration (refer to Schedule 5). For factors such as high concentration impact and corrosive gas, it is necessary to shorten the calibration period. In either case, the calibration period must not exceed one year.
- It is strictly forbidden to use high-concentration gas impact sensors (such as using a lighter) in daily use, otherwise the sensor will be seriously damaged.
- Care should be taken to maintain the transmitter clean during maintenance. If the sensor cover is clogged, the detection sensitivity may be degraded or even damaged.
- Maintenance of the operation, calibration, etc. of the transmitter should be performed by qualified personnel.
- When the sensor's service life arrives, it should be replaced in time. The replacement of the sensor should be carried out under the guidance of the manufacturer or returned to the factory for replacement. When replacing it yourself, be sure to remove the sensor module plug on the main board and replace it. Otherwise, the cable will be damaged easily.
- The maintenance of the instrument and the replacement of the components must use the accessories provided by the company. The use of non-company replacement parts may affect the performance and safety of the instrument itself.
- For faults encountered in routine maintenance, please refer to Table 4: Trouble Shooting. For those still unable to handle, please contact the manufacturer in time.

Chapter IV Attached Table

4.1.	Appendix	1:	Gas detector	selection table
------	----------	----	--------------	-----------------

Ga	\$	Measure range	principle	AG210	AG211	GTQ-Anr-A	GTQ-Anr-D
Combustible	EX	0~100%LEL	Catalytic combustion	-	-	•	•
Oxygen	O ₂	0-30%VOL 0-25%VOL	Electrochemical	•	•	-	-
Carbon	со	0-1000µmol/mol	Electrochemical	•	•	-	-
Hydrogen	H_2S	0-100µmol/mol	Electrochemical	•	•	-	-
Chlorine	CL_2	0-10µmol/mol	Electrochemical	•	•	-	-
Sulfur	SO_2	0-20µmol/mol	Electrochemical	•	•	-	-
Ammonia	NH3	0-100µmol/mol	Electrochemical	•	•	-	-
Nitric oxide	NO	0-250µmol/mol	Electrochemical	•	•	-	-
Nitrogen	NO ₂	0-20µmol/mol	Electrochemical	•	•	-	-
Hydrogen	HCL	0-30µmol/mol	Electrochemical	•	•	-	-
Ozone	O ₃	0-1µmol/mol	Electrochemical	•	•	-	-
Ethylene	C_2H_4O	0-20µmol/mol	Electrochemical	•	•	-	-
Formaldehy	CH ₂ O	0-20µmol/mol	Electrochemical	•	•	-	-
Methanol	CH ₃ OH	0-20µmol/mol	Electrochemical	•	•	-	-
Phosphine	PH_3	0-5µmol/mol	Electrochemical	•	•	-	-
Hydrogen	H_2	0-1000µmol/mol	Electrochemical	•	•	-	-
Fluorine gas	F ₂	0-1µmol/mol	Electrochemical	•	•	-	-
Hydrogen	HF	0-10µmol/mol	Electrochemical	•	•	-	-
Hydrogen	HCN	0-50µmol/mol	Electrochemical	•	•	-	-
Phosgene	COCL ₂	0-1µmol/mol	Electrochemical	•	•	-	-
Arsenide	AsH ₃	0-1/20µmol/mol	Electrochemical	•	•	-	-
Silane	SiH_4	0-50µmol/mol	Electrochemical	•	•	-	-
Acrylonitrile	C_3H_3N	0-20µmol/mol	Electrochemical	•	•	-	-
Carbon	CS_2	0-20µmol/mol	Electrochemical	•	•	-	-
Ethanol	C ₂ H ₅ OH	0-20µmol/mol	Electrochemical	•	•	-	-
Sulfur	SF_6	0-1000µmol/mol	Infrared	•	•	-	-
Carbon	CO ₂	0-5%/100%VOL	Infrared	•	•	-	-
Toluene	C_7H_8	0-20µmol/mol	PID	•	•	-	-
Xylene	C8H10	0-20µmol/mol	PID	•	•	-	
Benzene	C ₆ H6	0-20µmol/mol	PID	•	•	-	-
Acetic acid	$C_2H_4O_2$	0-1000µmol/mol	PID	•	•	-	-
Organic Volatile Gas	VOC	0-20μmol/mol 0- 1000μmol/mol	PID	•	•	-	-

Note: 1. The above are only some common gases and ranges. For gases and special ranges not listed in the parameter table, please consult the manufacturer directly. 2. 1µmol/mol=1ppm, according to relevant regulations, all units are changed to µmol/mol.

4.2. Appendix 2: VOC gas selection table

Gas Name	Formula	Factor	Gas Name	Formula	Factor
Butane, n-	C4H10	46.29	Amyl alcohol	C5H12O	3.2
Butanol, 1-	C4H100	4.01	Pentan-3-one	C5H100	0.8
Isooctane	C8H18	1.08	Pentan-2-one	C5H100	0.79
Isopentane	C5H12	6	Pentane, n-	C5H12	7.88
Terpinolene	C10H16	0.46	Piperylene	C5H8	0.66
Isobutylene	C4H8	1	Glutaraldehyde	C5H8O2	0.9
Isobutane	C4H10	8	Carbon tetrabromide	CBr4	3
Isooctyl alcohol	C8H18O	1.5	Diketene	C4H4O2	2.2
Isopropanol	C3H8O	4.35	Tert-butanol	C4H100	2.62
Diisopropylamine	C6H15N	0.7	Triethylamine	C3H9N	0.5
Hexene, 1-	C6H12	0.9	Nitrogen trichloride	NCIB	1
Hexan-2-one	C6H12O	0.8	Trimethylbenzene mixtures	C9H12	0.34
Hexane n-	C6H14	3.28	Trimethylbenzene, 1,3,5-	C9H12	0.34
Ethoxyethanol, 2-	C4H1002	29.83	Nonane, n-	C9H20	1.27
Ethylene glycol	C2H6O2	20	Benzonitrile	C7H5N	0.7
Ketene	C2H2O	3	Gasoline vapors		1.05
Vinyl bromide	C2H3Br	1	Gasoline vapors		0.8
Vinyl chloride	C2H3CI	2.1	Pyridine	C5H5N	0.75
Ethylene	C2H4	8	Bis(2,3-epoxypropyl) ether	C6H10O3	3
Butyl acetate, n-	C6H12O2	2.42	Bromoform	CHBr3	2.8
Isoamyl acetate	C7H14O2	1.6	Chlorobenzene	C6H5CI	0.45
Isobutyl acetate	C6H12O2	2.25	Hydrogen sulfide	H2S	4
Isopropyl acetate	C5H1002	2.2	Benzenethiol	C6H5SH	0.7
Ethyl acetate	C4H8O2	3.63	Chlorotoluene, o-	C7H7CI	0.45
Methyl acetate	C3H6O2	5.18	Biphenyl	C12H10	0.4
Propionaldehyde	C3H6O	1.68	Hydrazine	H4N2	3
Ethyl mercaptan	C2H6S	0.69	Asphalt, petroleum fumes		1
Ethanolamine	C2H7NO	3	Mineral spirits		0.8
Ethanol	C2H6O	8.72	Cumene	C9H12	0.58
Ethylene oxide	C2H4O	15	Furfural	C5H4O2	1.38
Chloroethanol 2-	C2H5CIO	10	Furfuryl alcohol	C5H6O2	2
Iminodi(ethylamine) 2,2-	C4H13N3	0.9	Camphene	C10H16	0.45
Nitric oxide	NO	8	Methyl mercaptan	CH4S	0.7
Acrylic Acid	C3H4O2	2.74	Methyl bromide	CH3Br	1.9
Bromoethane	C2H5Br	5	Cresol, p-	C7H8O	1.05
Dibromochloromethane	CHBr2CI	10	Cresol, o-	C7H8O	1.05
Bromobenzene	C6H5Br	0.7	Cresol, m-	C7H8O	1.05
Octane, n-	C8H18	1.58	Methanol	CH40	206.37
Octene, 1-	C8H16	0.69	Toluene	C7H8	0.51
Nitroaniline 4-	C6H6N2O2	0.8	Methylamine	CH5N	1.4
Nitrobenzene	C6H5NO2	1.7	Ethyl formate	C3H6O2	29.83
Isoprene	C5H8	0.69	Cyclohexene	C6H10	0.75
Allyl alcohol	C3H6O	2.07	Cyclohexane	C6H12	1.16
Allyl chloride	C3H5CI	4.5	Cyclohexanone	C6H100	1.03
Amyl acetate, n-	C7H14O2	1.8	Cyclohexanol	C6H12O	2.9

Gas Name	Formula	Factor	Gas Name	Formula	Factor
Cyclohexylamine	C6H13N	0.98	Acetone	C3H6O	0.71
Acetaldehyde	C2H4O	4.86	Ethyl acrylate	C5H8O2	2
Propylene oxide	C3H6O	7	Propane-1,2-diol, total	C3H8O2	10
Cyclopentane	C5H10	4	Epichlorohydrin	C3H5CIO	8
Chlorotrifluoroethylene	C2CIF3	1	Ethyl benzene	C8H10	0.54
Diisobutylene	C8H16	0.64	Styrene	C8H8	0.44
Diisopropyl ether	C6H14O	0.68	Benzyl chloride	C7H7CI	0.55
Divinylbenzene	C10H10	0.4	Benzaldehyde	C7H60	0.86
Diethyl ether	C4H100	0.88	Anisole	C7H8O	0.47
Diethylamine	C4H11N	1	Benzyl formate	C8H8O2	0.77
Dioxane 1,4-	C4H8O2	1.5	Benzyl alcohol	C7H8O	1.25
Dioxane 1,2-	C4H8O2	1.5	Phenylenediamine, p-	C6H8N2	0.6
Chlorine dioxide	CIO2	1	Aniline	C6H7N	0.5
Dibromoethane 1,2-	C2H4Br2	2	Benzene	Сене	0.5
Dichloroethylene 1,2-	C2H2CI2	0.75	Butene, 1-	C4H8O	1.15
Dichloromethane	CH2CI2	39	Crotonaldehyde	C4H6O	1
Dichlorobenzene o-	C6H4CI2	0.5	Ethyl amine	C2H7N	1
Carbon disulfide	CS2	1.4	WMD Methyl salicylate	C8H19O4	1
Dimethoxymethane	C3H8O2	1.4	WMD N-Mustard Gas	C4H18SCI2	1.1
Dimethyl ether	C2H6O	1.3	Dimethylhydrazine, 1,1-	C2H8N2	1
Dimethyl sulphide	C2H6S	0.5	Tetrahydrofuran	C4H8O	1.55
Dimethylaniline, NN-	C8H11N	0.6	Methylpropan-2-ol, 2-	C4H100	3.5
Xylene, m-	C8H10	0.44	Triethylamine	C6H15N	0.9
Dimethylamine	C2H7N	1.4	Toluene-2,4-diisocyanate	C9H6N2O2	1.6
Dicyclopentadiene	C10H12	0.81	Tetrafluoroethylene	C2F4	1
Diphenyl ether	C12H100	0.8	Trichloroethylene	C2HCI3	0.65
Chlorotoluene, p-	C7H7CI	0.5	Turpentine	C10H16	0.6
Hydroquinone	C6H6O2	0.8	Phenyl-2,3-epoxypropyl ether	C9H10O2	0.8
Butene, 1-	C4H8	1	Tetrachloroethylene	C2CI4	0.7
Ethyl butyrate	C6H12O2	0.95	Ethyl hexyl acrylate, 2-	C11H20O2	1
Isobutyraldehyde	C4H8O	1.2	Methylcyclohexanone 2-	C7H12O	0.95
Butyl mercaptan	C4H10S	0.54	Methylcyclohexanol, 4-	C7H14O	2.4
Butadiene diepoxide, 1,3-	C4H6O2	4	Methylcyclohexane	C7H14	1.1
Butadiene	C4H6	0.83	Dimethylheptan-4-one, 2,6-	C9H18O	0.8
Isobutanol	C4H100	3.5	Isopropyl chloroformate	C4H7O2CI	1.6
Butylamine, 2-	C4H11N	0.9	Epoxypropyl isopropyl ether, 2,	C6H12O2	1.1
Butylamine, n-	C4H11N	1	Methylpentane-2,4-diol, 2-	C6H14O2	4
lodomethane	СНЗІ	0.4	Ethyl chloroformate	C3H5O2CI	83
Vinyl acetate	C4H6O2	1.1	Ethyl (S)-(-)-lactate	C5H10O3	3
Propyl acetate, n-	C5H10O2	2.5	Methyl sulphide	C2H6S	0.5
Acetic Acid	C2H4O2	36.15	Dimethylformamide	C3H7NO	0.9
Diesel Fuel		0.75	Dimethylethylamine, NN-	C4H11N	0.8
Methyl acrylate	C4H6O2	3.4	Dimethyl disulphide	C2H6S2	0.23
Propene	СЗН6	1.4	Diethylaminopropylamine, 3-	C7H18N2	1
Propan-1-ol	СЗН8О	4.8	Diethylaminoethanol, 2-	C6H15ON	2.7
Bromopropane, 1-	C3H7Br	1.3	Kerosene		0.83

Note: This table only lists some VOC gases, please consult the manufacturer for other unlisted gases.

4.3. Appendix 3: Recommended Calibration gas table

Gas	Measure Range	Standard gas	Concentration
CH4	100%LEL	CH4	60%LEL
02	30%VOL	02	20.9%VOL
C02	5%VOL	C02	3%VOL
20	1000µmo1/mo1	20	700µmo1/mo1
CO	500µmo1/mo1	CO	300µmo1/mo1
Noc	1000µmo1/mo1	1.0400	700µmo1/mo1
VOC	20µmo1/mo1	I-C4H8	15µmol/mol
H2	1000µmo1/mo1	H2	700µmo1/mo1
H2S	100µmo1/mo1	H2S	80µmo1/mo1
NH3	100µmo1/mo1	NH3	60µmo1/mo1
HCL	30µmo1/mo1	S02	60µmo1/mo1
CL2	10µmol/mol	CL2	10µmol/mol
S02	20µmo1/mo1	S02	15µmol/mol
NO2	20µmo1/mo1	CL2	10µmol/mol
C2H40 (ETO)	20µmo1/mo1	C2H40	10µmo1/mo1
HF	10µmo1/mo1	CL2	10µmol/mol
PH3	5µmol/mol	H2S	5µmo1/mo1
COCL2	1µmo1/mo1	CL2	1µmo1/mo1

Note: Due to the inevitable error in the concentration of the standard gas, the above concentration values are for reference only. For gases and special ranges not listed in the parameter table, please consult the manufacturer directly.

4.4 Appendix 4: Trouble-shooting

FAULTS	REASONS	SOLUTIONS	
No output signal	Wrong wiring	Re-wiring	
	Wrong power supply	Check power supply	
	Circuit fault	Return to factory	
	The sensor cable is broken	Return to factory	
Lower readings	Sensor failure	Replace sensor modular	
	Need calibration	Re-calibration	
	Reading drift	Re-calibration	
Higher readings	Sensor failure	Replace sensor modular	
	Need calibration	Re-calibration	
	High-concentration gas shock	Return to factory	
	Reading drift	Re-calibration	
	Sensor failure	Replace sensor modular	
	Interference	Check if it's grounded well	
Unstable readings	On preheating	Wait a while after power-on	
	Calibration failure	Re-calibration	
	Circuit fault	Return to factory	
	Sensor failure	Replace sensor modular	
Slow response	Dust blocking the explosion-proof disc	Clean up the dust of the explosion-proof disc	
	Circuit fault	Return to factory	

SCIENTIFIC INNOVATION SPECIALIZED DEDICATED

Nanjing AIYI Technologies Co., Ltd.

Address: Building 13, No. 1318 Qingshuiting East Road, Jiangning District, Nanjing 210000, Jiangsu, China Tel: 0086-25-87756351 Fax: 0086-25-87787362 Web: www.aiyitec.com Email: sales@autequ.com