D. FORMULAE FOR RESULTS

D.1. BASIC RESULTS - RMS, VDV, CRF, OVL, PEAK, P-P, MTVV

NOTATION

T- measurement time
\mathbf{T}_{E} - exposure time (period during which a person is exposed to the action of vibration).
\mathbf{T}_{0} - period equal to 8 hours (28800 seconds)
τ - detector time constant $(\tau=1 \mathrm{~s})$
$\mathbf{a}_{\mathbf{w}}(\mathbf{t})$ - the temporary value of the measured vibration with the weighting filter \mathbf{W} (e.g. Wd) on the input of the RMS detector
$\mathbf{p}_{\mathbf{W}}(\mathbf{t})$ - the temporary value of the measured vibration with the weighting filter \mathbf{W} (e.g. Wd) on the output of the RMS detector calculated from the equation:
$p_{w}(t)=\left(\frac{1}{\tau} \int_{-\infty}^{t} a_{w}^{2}\left(t_{x}\right) \exp \left(\frac{t_{x}-t}{\tau}\right) d t_{x}\right)^{1 / 2}$
where:
$\mathbf{t}_{\mathbf{x}}$ - time (variable of the integration)

For RMS, VDV, PEAK, PEAK-PEAK, MTVV results when saved in the logger T is equal to logger step

For RMS, VDV, PEAK, PEAK-PEAK, MTVV results when saved as the main results T is equal to measurement period value

FORMULAE

RMS

The Root Mean Square result is calculated as follows:

$$
R M S=\left(\frac{1}{T} \int_{0}^{T} a_{w}^{2}(t) d t\right)^{1 / 2}
$$

VDV

The Vibration Dose Value result (expressed in $\mathrm{m} / \mathrm{s}^{1.75}$) as follows:

$$
\operatorname{VDV}=\left(\int_{0}^{T} a_{w}^{4}(t) d t\right)^{1 / 4}
$$

CRF

The Crest Factor value is obtained from the proportion PEAK/RMS.

OVL

The Overload presents the percentage of the time the input signal was overloaded.

PEAK

The PEAK value is calculated for the given \mathbf{T} as follows:

$$
\operatorname{PEAK}=\max _{\mathrm{T}}\left|\mathbf{a}_{\mathrm{w}}(\mathbf{t})\right|
$$

P-P

The Peak to Peak result is calculated as follows:

$$
P-P=\max _{T}\left(0, a_{w}(t)\right)-\min _{T}\left(0, a_{w}(t)\right)
$$

MTVV

The Maximum Transient Vibration Value is defined (according to the ISO 8041 standard) as:

$$
M T V V=\max _{T}\left(p_{w}(t)\right)
$$

D. 2 HAND-ARM DOSIMETER RESULTS - MAX(RMS), EAV TT, EAV TL, ELV TT, ELVTL, AEQ, Current Exposure, Daily Exposure

NOTATION

EAV - Exposure Action Value - constant value defined by USER or defaultly set for U.K., Italy, France, Germany, - according to local standards (in Poland MNDN8h value)

ELV - Exposure Limit Value - constant value defined by USER or defaultly set for U.K., Italy, France, Germany - according to local standards (in Poland MDND30 value)

MAX(RMS)

The MAX(RMS) result is the highest RMS value taken from three axis

$$
\operatorname{MAX}(\mathrm{RMS})=\max \left\{\mathrm{RMS}_{x}, \mathrm{RMS}_{y}, \mathrm{RMS}_{z}\right\}
$$

EAV Total Time

The EAV Total Time result is calculated as follows:

$$
E A V_{T T}=T_{0}\left(\frac{E A V}{A E Q}\right)^{2}
$$

EAV Time Left

The EAV Time Left result is calculated as follows:

$$
E A V_{T L}=E A V_{T T}-T
$$

ELV Total Time

The ELV Total Time result is calculated as follows:

$$
E L V_{T T}=T_{0}\left(\frac{E L V}{A E Q}\right)^{2}
$$

ELV Time Left

The ELV Time Left result is calculated as follows:

$$
E L V_{T L}=E L V_{T T}-T
$$

MNDN Total Time (result only for polish standards)
The MNDN Total Time result is calculated as follows:

$$
\mathrm{MNDN}_{\mathrm{TT}}=\mathrm{T}_{0}\left(\frac{\text { MNDN8h }}{\text { AEQ }}\right)^{2}
$$

MNDN Time Left (result only for polish standards)
The MNDN Time Left result is calculated as follows:

$$
\mathrm{MNDN}_{\mathrm{TL}}=\mathrm{MNDN}_{\mathrm{TT}}-\mathrm{T}
$$

AEQ (HAND-ARM VECTOR)

The AEQ result is calculated as follows:

$$
\mathbf{A E Q}=\sqrt{\mathbf{R M S}_{\mathrm{x}}^{2}+\mathrm{RMS}_{\mathrm{y}}^{2}+\mathrm{RMS}_{\mathrm{z}}^{2}}
$$

Current Exposure

The Current Exposure result is calculated as follows:

$$
C E x p=A E Q \sqrt{\frac{T}{T_{0}}}
$$

Daily Exposure

The Daily Exposure result is calculated as follows:

$$
A(8)=A E Q \sqrt{\frac{T_{E}}{T_{0}}}
$$

D. 3 WHOLE-BODY DOSIMETER RESULTS - MAX(RMS), MAX(VDV), EAV TT, EAV TL, ELV TT, ELV TL, Current Dose, Daily Dose, Current Exposure, Daily Exposure, Vector

NOTATION

EAV - Exposure Action Value - constant value defined by USER or defaultly set for U.K., Italy, France, Germany according to local standards (in Poland ONDN8h value)
$E A V_{A}$ - Exposure Action Value expressed in $\frac{\mathbf{m}}{\mathbf{s}^{\mathbf{2}}}$
$E A V_{V}$ - Exposure Action Value expressed in $\frac{\mathbf{m}}{\mathbf{s}^{\mathbf{1} .75}}$ (this unit may be selected in USER option)

ELV - Exposure Limit Value - constant value defined by USER or defaultly set for U.K., Italy, France, Germany according to local standards (in Poland ONDN30 value)

ELV $_{\mathbf{A}}$ - Exposure Limit Value expressed in $\frac{\mathbf{m}}{\mathbf{s}^{\mathbf{2}}}$
ELV $_{\mathrm{v}}$ - Exposure Limit Value expressed in $\frac{\mathbf{m}}{\mathbf{s}^{\mathbf{1 . 7 5}}}$ (this unit may be selected in USER option)
$\mathbf{k}_{\mathrm{x}, \mathrm{y}, \mathrm{z}^{-}} \quad$ weighting factors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis

MAX(RMS)

The MAX(RMS) result is the highest weighted RMS value taken from three axis

$$
\operatorname{MAX}(\mathrm{RMS})=\max \left\{1.4 \mathrm{RMS}_{x}, 1.4 \mathrm{RMS}_{y}, \mathrm{RMS}_{z}\right\}
$$

MAX(VDV)

The MAX(VDV) result is the highest weighted VDV value taken from three axis

$$
\operatorname{MAX}(\mathrm{VDV})=\max \left\{1.4 \mathrm{VDV}_{\mathrm{x}}, 1.4 \mathrm{VDV}_{\mathrm{y}}, \mathrm{VDV}_{\mathrm{z}}\right\}
$$

EAV Total Time

The EAV Total Time result is calculated as follows:

$$
\begin{aligned}
& E A V_{T T A}=\min \left\{E A V_{T T A x}, E A V_{T T A y}, E A V_{T T A z}\right\} \\
& E A V_{T T A x, y, z}=T_{0}\left(\frac{E A V_{A x, y, z}}{R M S_{x, y, z}}\right)^{2} \\
& E A V_{T T V}=\min \left\{E A V_{T T V x}, E A V_{T T V y}, E A V_{T T V z}\right\} \\
& E A V_{T T V x, y, z}=T\left(\frac{E A V_{V x, y, z}}{V D V_{x, y, z}}\right)^{4}
\end{aligned}
$$

$$
E A V_{T T}=\left\{\begin{array}{l}
E A V_{T T A} \text { if EAV limit is in } \frac{\mathbf{m}}{\mathbf{s}^{2}} \\
E A V_{T T V} \text { if EAV limit is in } \frac{\mathbf{m}}{\mathbf{s}^{1.75}}
\end{array}\right.
$$

EAV Time Left

The EAV Time Left result is calculated as follows:

$$
E A V_{T L}=E A V_{T T}-T
$$

ELV Total Time

The EAV Total Time result is calculated as follows:

$$
\begin{aligned}
& E L V_{T T A}=\min \left\{E L V_{T T A x}, E L V_{T T A y}, E L V_{T T A z}\right\} \\
& E L V_{T T A x, y, z}=T_{0}\left(\frac{E L V_{A x, y, z}}{R M S_{x, y, z}}\right)^{2} \\
& E L V_{T T V}=\min \left\{E L V_{T T V x}, E L V_{T T V y}, E L V_{T T V z}\right\} \\
& E L V_{T T V x, y, z}=T\left(\frac{E L V_{V x, y, z}}{V D V_{x, y, z}}\right)^{4} \\
& E L V_{T T}=\left\{\begin{array}{l}
E L V_{T T A} \text { if ELV limit is in } \frac{m}{s^{2}} \\
E L V_{T T V} \text { if ELV limit is in } \frac{m}{s^{1.75}}
\end{array}\right.
\end{aligned}
$$

ELV Time Left

The ELV Time Left result is calculated as follows:

$$
E L V_{T L}=E L V_{T T}-T
$$

ONDN Total Time (result only for polish standards)
The ONDN Total Time result is calculated as follows:

$$
\mathrm{ONDN}_{\mathrm{TT}}=\mathrm{T}_{0}\left(\frac{\text { ONDN8h }}{\text { Vector }}\right)^{2}
$$

ONDN Time Left (result only for polish standards)
The ONDN Time Left result is calculated as follows:

$$
\mathrm{ONDN}_{\mathrm{TL}}=\mathrm{ONDN}_{\mathrm{T}}-\mathrm{T}
$$

Current Dose

The Current Dose result is calculated as follows:
CDose = VDV

Daily Dose

The Daily Dose result is calculated as follows:

$$
\text { DDose }=\operatorname{VDV}_{4} \sqrt{\frac{T_{E}}{T}}
$$

Current Exposure

The Current Exposure result is calculated as follows:

$$
\text { CExp }=\text { RMS } \sqrt{\frac{T}{T_{0}}}
$$

Daily Exposure

The Daily Exposure result is calculated as follows:

$$
A(8)=R M S \sqrt{\frac{T_{E}}{T_{0}}}
$$

Vector

The Vector result is calculated as follows:

$$
\text { Vector }=\sqrt{\left(k_{x} R M S_{x}\right)^{2}+\left(k_{y} R M S_{y}\right)^{2}+k_{z} R M S_{z}^{2}}
$$

Defaultly Vector is calculated as follows:

$$
\text { Vector }=\sqrt{\left(1.4 R_{M S}\right)^{2}+\left(1.4 R_{M S}\right)^{2}+R M S_{z}^{2}}
$$

D. 4 CALCULATOR RESULTS - A(8), Dose(8)

NOTATION

NFiles - \quad number of result files
$\mathbf{T}_{\mathbf{E}}(\mathbf{i})-\quad$ exposure time for i-file in seconds
$\mathbf{T}(\mathbf{i})$ - measurement time for i-file
$\mathbf{A}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}(\mathbf{8})$ - results for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis
Dose $_{x, y, z}(8)$ - results for x, y, z axis
$\mathbf{k}_{\mathrm{x}, \mathrm{y}, \mathrm{z}^{-}} \quad$ weight factors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis

Hand-Arm Daily

The Hand - Arm Daily result is calculated as follows:

$$
A(8)=\sqrt{\sum_{i=1}^{\text {NFiles }}\left(\frac{\mathbf{T}_{E}(i)}{28800}\right) \text { VEC }_{H A}{ }^{2}(\mathbf{i})}
$$

where VEC $_{H A}(\mathrm{i})=A E Q=\sqrt{R_{M S}^{2}+R M S_{y}^{2}+R M S_{z}^{2}}$

Whole-Body Vibration Daily

The Whole-Body Vibration Daily results are calculated as follows:

$$
\begin{aligned}
& A_{x, y, z}(\mathbf{8})=\sqrt{\sum_{i=1}^{\text {NFiles }}\left(\frac{T_{E}(i)}{28800}\right) \mathbf{k}_{x, y, z}^{2} \mathbf{R M S}_{x, y, z}^{2}} \\
& A(8)=\operatorname{MAX}\left\{A_{x}(8), A_{y}(8), A_{z}(8)\right\} \\
& \text { Dose }_{x, y, z}(\mathbf{8})=\sqrt[4]{\sum_{i=1}^{\text {NEiles }}}\left(\frac{T_{E}(i)}{T(i)}\right) k_{x, y, 2}^{4} \text { VDV }_{x, y, z}^{4} \\
& \operatorname{Dose}(8)=\operatorname{MAX}\left\{\operatorname{Dose}_{\mathrm{x}}(8), \operatorname{Dose}_{\mathrm{y}}(8), \operatorname{Dose}_{z}(8)\right\}
\end{aligned}
$$

